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The problem of expanding an angular momentum wave function centered at one point in
terms of angular momentum wave functions centered at another point is analysed. The em-
phasis is on obtaining methods that can be applied to functions that are defined numeri-
cally, in contrast to analytic methods. Three numerical approaches are described, and it is
found that one leads to extremely accurate results. The question of the rate of convergence
of the resulting series is discussed, and results of the application of the expansion to the cal-
culation of nuclear attraction three-center integrals, and electron-electron four-center
integrals are presented.
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1. INTRODUCTION

All calculations of molecular electronic properties require the evaluation of
so-called multicenter integrals. Without the possibility of obtaining these,
essentially all calculations, from the simplest Hartree—-Fock to the most
complex many-body perturbation theory and coupled-cluster calculations,
to which Prof. J. Paldus has made such definitive contributions, would be
impossible. The basic multicenter integral problem is to evaluate matrix ele-
ments of angular momentum wave functions centered at the various nuclei
in a molecule. The simplest such integrals are the overlap integrals of the form

R) = [ gy (r = RY*Fy () I (1)
Other, more complicated integrals are the nuclear attraction three-center

integrals involving the matrix elements of the nuclear Coulomb potential
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of one nucleus and angular momentum functions centered at two other nu-
clei and the electron-electron repulsion integrals involving products of four
angular momentum wave functions.

The problem of obtaining these integrals is very simple if the functions
are Gaussian type orbitals (GTOs) of the form

f,.. (N =r"exp(-ar?)C,, () (2)
where
_ 41
Cin(6,9 = I+l Yin (6,9 (3

because of the essential property that the product of two such functions at
different centers is a finite linear combination of such functions centered at
an intermediate point. For this reason, the vast majority of quantum chem-
istry calculations employ Gaussian functions. While GTOs have been in-
valuable in myriad practical calculations, they are not a complete answer to
the problems of computational chemistry since they cannot describe the
behaviour of the electronic wave functions at the nuclei, and super-
positions of large numbers of them are required to give accurate results. As
well, variational optimisation of the radial factors is not very feasible.

Many calculations in atomic physics employ numerical orbitals defined
on a radial mesh®. Such functions permit the application of the variational
principle through the Hartree-Fock equation to obtain accurate results us-
ing much smaller sets of functions, as well as providing a better description
of the electronic behaviour at the nuclei. However, with the exception of
diatomics, numerical orbitals have not been extensively used in molecular
calculations, although progress in this has been made by one of us?.

The problems associated with using more general functions than GTOs
can be partially solved if an angular momentum function centered at one
point can be expanded in terms of angular momentum functions centered
at another point. In principle, the completeness of the spherical harmonics
suggests that the expansion

fin(=R) =S Fiium RICL (DCLy B 4)

LML"M

can be used for calculations involving orbitals centered at more than one
point. The function F, .., (r,R) is often called the Lowdin a-function®. It
will be seen that the sum is singly infinite, in that |[L — L'| < I. Thus, for ex-
ample, if the expansion is known for g,,,(r - R) in Eqg. (1),
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ATt I+’ o , .
o1 +1 L’;”J’o Girmmw R (@r°drC,,, (R) (5)

I(R) =

from the orthogonality of the spherical harmonics.

In this note, a number of methods of computing the a-function numeri-
cally will be described. One of these, the Fourier transform method, has
been used extensively in practical molecular calculations?, but the more di-
rect methods suggested below are probably more accurate and efficient.

I1. ANALYTIC EXPRESSIONS

It is convenient to use the unnormalised harmonic functions defined in
Eq. (3). We note two properties of the C,,(r). The product of two such func-
tions can be expanded in terms of Wigner 3-j coefficients as

I Lggr

0 oftm m _t,,ﬁCLM(G,@. (6)

Cn(®.9C,,, (0= 5 (-D" (2L +1>§

The expansion of a plane wave in spherical harmonics is given by

ERDANC +1)j, (k) (R)* C,py () )

It is sufficient to obtain expressions for the a-function only for the case
I = 0 since in the more general case f,,(r) can be factored:

f.(N=r'f,(C,, (1. (8)
The function r'C,,(r) defines the solid harmonic
C..(n=r'C, (). 9)

The terms in k'C|m(IA<) in the identity e’ ("~ R) = gikTe-IkR |ead to the trans-
lation formula for solid harmonics

Cin(r-R) = (-D="m (21, +1)(21, +1) x
2l + ! a, 1, lgoh 1, 1o
(21, +Dl(2l, +Hn 0 OBH‘nl m, —mil
xCim, (NC ., R). (10)
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The sums are, however, constrained by I; + I, =1, m; + m, =m
The spherically symmetric factor fy(r) in Eq. (8) can be expanded as

f,(Ir-R) = Z F, (r,RIC,, (/*C,, (R) =
= Z F, (r,R)P, (T [R) (11)
where

F(.R =

2)‘; 1 [P OF(R? — 2Rt +r2]¥7) .. (12)

Equations (10) and (11) can be combined to give

_ — _1\l+m (2' +1)”
in(T=R) = 3 (7L 0 +1)(2I1 D2, + D!

S T M Pyt P

X
0 0 , m, —mH
x C,, (N*C, . (NC,, R)C,, (RIr"R“F, (r,R) =

= (AN L +)(21, +D)(2L, +D(2L, +1)

(2 + D! o1, L,od, A LOd, A LO

X

@+, +nud o o o oHH o of
o, L, oo, A Looo, AL O

“Hn, m, -mOtm, - w00, wo-m,H

xC_y. (NCL,, R)Ir"R"F, (r,R) . (13)

The sum on the magnetic quantum numbers can be transformed in terms
of a Racah 6-j coefficient:
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_Q\Mtu+M; +M, Dll |2 I 0 >\
Z(l) ' Hnl m, —mH U —Mlﬁﬁ'ﬂz U —MZH

- (_1)I1+|2+)\+m DI Ll II_Z

ALLDAQ L A) AL, L,A)A(L, L)

:(_ )|+)\+m X
(L +1, =ML, +1, =M, +A -1, +A -L,)!
LOL+L 0l L L O 14)
L +L, - OBm M, m,0

where

I, +1

—iQ, + =)+, - )Iljlz
(1, +1, +1 +1)! D '

1 2

(15)

ALY = d
O

Assembling the factors gives an expression for the a-function:

Fi,Lmm,m, GR) = Z( D" (2L, +1)(2L, +1)H @Q(L Al)a, Al =1p) y

aq(L, L,
< ;1 Loﬁmm I\:l v *OURE (R (16)
where
qal’:L) = g+I'-L-nng L a7

a+ +L+1)II HLH—I)IZH

In view of Eq. (16), it is sufficient for most purposes to limit the analysis
to the | = 0 case. In order to assess the accuracy of various methods, the
analytic result for the Slater type orbital (STO) case will be used. If

fo(r)=e™ (18)
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F, (r,R) =iarj, ,, (far)h* (iaR) + i Rj, (@ r)h™) (ioR) -

A+1

— (21 +1)j, (iar)h® (iaR) (19)

for r < R, with a similar expression for r = R. The result for the more general
STO r%e™®" is readily obtained by differentiating s times with respect to a.

I11. FOURIER TRANSFORM METHOD

It is well known that translation of a function in ordinary space corre-
sponds to multiplication by a plane wave in momentum space. Explicitly, if

f(K) =[e*"f(ndr (20)
then
_ 1 SKE ik g
f(r-R) = (21'[)3-[6 e f (k) dk . (21)
From Eq. (7), it follows immediately that if
f(n="=,0C, 1 (22)
F(K) = 4ri'C,,, () [}, (kDf , (O *dlr
= 41i'C, (K)f, (K) . (23)
Therefore

f(r-R) = 211[2 %Mi"““ (2L +D)(2L" +D[Cy (K Cryy. (K)* Cpy (K) AR, %

X Cuy (0 Cuiy () [[Ju (k). (kRYF,, (K clk =
_2 oL+l , B m|:| L L'gol L L Dx
Trgn COTHEEEIETH o oHEm MM

% Clp (NCon R) [} i (k)i (kR)F,,, (K dkc. (24)
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Then Fy muw(1R), as defined in Eq. (4), is given by

L L'ggl L L'Q

Fn_L'mMM'(r'R):iI_ULV(ZL+1)(2L'+1)(_1)m% 0 OHB—m M M'Hx

2 [, k)i (KR, (O (25)
Tt 0

The numerical calculations of the spherical Hankel transforms of Eqs (23)
and (25) present considerable difficulty because of the rapid oscillation of
the integrand at large values of the transform variable. It has been shown?
that this problem can be avoided by defining both the function and its
transform on a logarithmic mesh. The problem is then reduced to making
two successive Fourier transforms, which can be performed with an opera-
tion count proportional to N In N, where N is the number of mesh points.
This method has been applied successfully in numerical molecular calcula-
tions for a number of small molecules?.

A difficulty with the method is that the integrand decreases rather
slowly, as k™ at large k, in the case of s-wave functions with a cusp at the
origin. This problem, which seems to be more serious in principle than in
practice, can be partially obviated by subtracting from f,,(r) a Slater func-
tion with the same cusp behaviour and adding back the known analytic be-
haviour. A second slight drawback is that the numerical method requires
using mesh values that are physically unrealistically small.

There is a very extensive literature on the application of Fourier trans-
form methods to the multicenter integral problem. It was observed in 1962
by Prosser and Blanchard® that the two-center integral can be obtained as a
convolution and hence in terms of Fourier transforms. This approach has
been pursued extensively by Silverstone and co-workers®, Steinborn and co-
workers’, and more recently by Safouhi and Hoggan®.

1V. SERIES EXPANSIONS

Various authors®*! have obtained series expansions for the function F,(r,R).

The simplest of these is to rewrite Eq. (12) by introducing the variable s? =
R? — 2rRt + r?, s ds = —rR dt as the integration variable:

2\ +1 _r+R

2rR Jir-RI

F (r,R) = P, ((r* +R? —s*Y2rR)sf(s) ds. (26)
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The Legendre polynomial can be expanded using the binomial theorem to
give an expansion for F,(r,R):

r t+k-I
F,(r,R) =(2A +1) Z Coke Qﬁg 21 27
t
where
. (=)™ (@A - 2m)! (28)
ML 20 I mE —m)E -m) kI (N —m —t - K)!
and
“(k+ r+R +
Lo = (R 1 8% (9) s (29)

This result is not useful in practice since the terms behave as r-®*1) for
small r, whereas the result actually behaves as r*. There is therefore a drastic
cancellation of large terms, even for small values of A.

A more useful expansion can be obtained be making the change of vari-
able s =R +ry, forr <R, in Eq. (26), as

2\ +1 1

FER =S [ R (y + o (@-y DA+ TR +y)dy =

-2k-p

_2A+1 (D" P2l - 2K)! r y
2 qu'k!(I—k)!p!q!(I—2k—p—q)!Qﬁa

1 . r
X[y AR ) dy =

_ 2N +1 (-1 Pra27K P (2] - 2K)! %a‘“‘p 5
27! %k!(l—k)!p!q!(l—Zk—p—q)! 2R
r
><[‘]p+2q +E‘]p+2q+1] (30)
where
3, = [y TR +ry)dy . (31)
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This result can obviously be applied in the STO case to give an expression
equivalent to that of Eq. (19). In the STO case

_n!e—uR Dar . (_Gr)p —er . (ar)pD

I, = & .
@™ 5 & P & Pl

(32)

This expression manifests the difficulties that arise at small values of r.
However, in this case the problem can be readily circumvented by rewriting
the expression as

Zm[( ar)® —(-ar)®]. (33)

V. NUMERICAL METHODS

The numerical calculation of the a-function evidently requires a minimum
of the order of NL,,,, floating point operations (flops) where N is the num-
ber of mesh points, and L, is the maximum | value required.

The most efficient method appears to be the use of the series of Eq. (27)
for which the calculation of the integrals requires the evaluation of two in-
definite integrals, each requiring =N operations. However, as noted above,
this method appears to be impractical for small r and large | values.

The spherical Hankel transform approach of Eq. (25) requires =N In N
operations for each of two Fourier transforms, as well as the calculation of
the j..(kr). However, the transform f (k) and the j,.(kr) are computed only
once. Application of Eqg. (25) avoids the use of Eq. (16) in the case | > 0.

One plausible approach to the problem is to evaluate the integral of
Eqg. (12) directly. This is probably best carried out using Gauss-Legendre
integration giving the approximation

F(.R) = %Wj P () f ([R? - 2rRt; +r21%) (34)

where w; and t; are the abscissas and weights for Gauss-Legendre integra-
tion. For each r; and t;, the function values can be interpolated independ-
ently of A and the fixed values P,(t;)) need be computed only once. This
method then can be carried out very efficiently in =NL,,,Ny operations.

A similar approach is to evaluate the integral of Eq. (31) numerically as
Ngi

F(rI,R)—ZWP(t + (1 t ))(1+')f (R +rt)). (35)
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This method is slightly less efficient than the previous one since the values
of P, must be obtained afresh for each calculation. Since they satisfy a sim-
ple recurrence relation, this is not a major drawback, however.

VI. NUMERICAL RESULTS

In this section, numerical results will be presented for the three calcu-
lational methods described above. The calculations are made for the | = 0
Slater function f(r) = e and comparisons are made with the exact result of
Eqg. (19) for R = 1.0. The quantity calculated is

FLR = 2 [ (k) )y (kR (0K dk (36)
Tt 0
where
f(K) :IO“’ j, (krye "r2dr . (37)

The calculations for the spherical Hankel transform approach are made
on a mesh [rinfmax] With mesh points uniformly spaced in the variable p =
In r. The results for four cases are presented in Figs 1-4. In each case the er-
ror as a function of r is shown for A = 0 and 10, and r,,, = 20.0. The results
for ri, = 0.001, for 128 mesh points (dp = 0.0780) are shown in Fig. 1, and
for 256 mesh points (dp = 0.0388) are shown in Fig. 2. Corresponding

0.003

0.002

error

0.001

0.000

-0.001

-0.002

-0.003

-0.004 1 1 1 1 1 L 1 1 1
-7 -6 -5 -4 -3 -2 -1 0 1 2 3

Fic. 1
Error in F,(r,R), R = 1, defined in Eqg. (36), as a function of p = In r, computed on 128 mesh
points and p,,;, = 0.001. A =0 (—), 10 (- - -)
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results with r,;, = 0.00001, dp = 0.0961 and 0.0478, respectively, are shown
in Figs 3 and 4.

Evidently, the results for the smaller value of r.;, are somewhat more
accurate. This is because the integrand in the transform of f(r) behaves
like r¥2 for r - 0 so that values of r very close to the origin are required.
Although the errors are fairly substantial, it should be observed that the re-
sult will occur in spatial integration and that the rapidly oscillating errors

0.006 : :

0.004

error

0.002

0.000

-0.002

-0.004

-0.006

-0.008 1 1 | 1 1 | 1 1 1
=7

FiG. 2
As in Fig. 1, using 256 mesh points. A =0 (——), 10 (- --)
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-0.003

-0.004

-0.005 1 1 L | L L L
-12  -10 -8 -6 -4 -2 0 2 4

FiG. 3
As in Fig. 1, with p;, = 0.00001. A =0 (—), 10 (- - -)
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may largely cancel. Moreover, the errors occur largely for r < R and may
be suppressed by the integration weight factor r?. This point will be elabo-
rated below.

Results using the numerical integration approach of Eq. (34), with Ny, = 20
are shown in Fig. 5, again for A = 0 and 10. Clearly, the approximation is
worst for r close to R and does not show the possibly compensating oscillat-
ing behaviour of the previous results. More detailed results are presented in

0.0025 : : : :

0.0020

error

0.0015

0.0010 |~

0.0005 —

0.0000

-0.0005 —

-0.0010 |

-0.0015 ! ! L
-12  -10 -8 -6 -4 -2 0 2 4

Fic. 4
As in Fig. 3, using 256 mesh points. A = 0 (——), 10 (- --)

0.0000 T~ =T 0 ;

-0.0002 —

error

-0.0004 —

-0.0008 |-

\
\
\
\
\
\
1
\
\
-0.0006 |- |
1
1
1
\
'\
-0.0010 |- !
1

1

\

-0.0012 - !
\

-0.0014 1 1 1 I | 1 L
04 06 0.8 1.0 1.2 14 1.6 1.8 2.0
log r

Fic. 5
Error in F,(r,R), R = 1, defined in Eq. (36), as a function of p = In r, calculated using Eq. (34)
and Gaussian integration on 20 mesh points. A =0 (—), 10 (- --)
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Table I, in which values of F,(r,R), R = 1.0 are presented for r = 0.9, 1.0, and
1.1. The errors clearly decrease rapidly as |[R — r| increases, more or less inde-
pendently of A. The dependence of the error on Ny, is shown in Table Il for
A =0 and 10. These results indicate that the use of Eq. (34) does not offer
significant improvement on the spherical Hankel transform approach.

The situation is markedly better using the approximation of Eq. (35). In-
deed, it is found that for values of Ny, only slightly greater than A, accuracy
comparable to the machine accuracy 10~ is obtained. The reason for this

TaABLE |
Values of the function F,(r,R) for r = R = 1.0, and the errors in using Eq. (34) for r = 0.9, 1.0,
and 1.1, with 0 < A < 20. N, = 40
A F,(1.0,1.0) 3, 3, 3,
0 0.29700 -0.129E-07 -0.310E-05 -0.280E-07
1 0.24805 -0.389E-07 -0.931E-04 -0.847E-07
2 0.13367 -0.659E-07 -0.155E-04 -0.143E-06
3 0.07594 —-0.945E-07 -0.218E-04 —0.205E-06
4 0.04760 -0.125E-06 -0.282E-04 —0.270E-06
5 0.03234 -0.159E-06 -0.346E-04 -0.341E-06
6 0.02333 -0.197E-06 -0.411-E04 -0.420E-06
7 0.01759 -0.240E-06 -0.478E-04 -0.507E-06
8 0.01373 -0.288E-06 -0.546E-04 -0.604E-06
9 0.01101 -0.343E-06 -0.615E-04 -0.714E-06
10 0.00903 —0.406E-06 -0.687E-04 —0.838E-06
11 0.00753 —0.479E-06 -0.761E-04 —0.980E-06
12 0.00638 -0.564E-06 -0.837E-04 -0.114E-05
13 0.00547 -0.661E-06 -0.915E-04 -0.133E-05
14 0.00474 -0.774E-06 -0.977E-04 -0.154E-05
15 0.00415 —-0.905E-06 -0.108E-03 -0.178E-05
16 0.00367 -0.106E-05 -0.117E-03 -0.206E-05
17 0.00326 -0.123E-05 -0.126E-03 -0.238E-05
18 0.00292 -0.144E-05 —0.136E-03 -0.275E-05
19 0.00263 -0.168E-05 -0.146E-03 -0.317E-05
20 0.00238 -0.196E-05 -0.157E-03 -0.366E-05
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TasLE 1l

The errors in F,(1.0,1.0) for various values of Ngl using Eq. (34) for A = 0 and 10

Ngi A=0 A =10
0.750E-03 0.282E+00
0.335E-03 0.297E-01

10 0.178E-03 0.903E-02

12 0.105E-03 0.404E-02

14 0.675E-04 0.220E-02

16 0.458E-04 0.135E-02

18 0.325E-04 0.890E-03

20 0.239E-04 0.622E-03

22 0.181E-04 0.453E-03

24 0.140E-04 0.341E-03

26 0.111E-04 0.264E-03

28 0.890E-05 0.208E-03

30 0.726E-05 0.168E-03

TasLE I

The errors in F,(1.0,1.0) for various values of A using Eq. (35) with Ngi = 20

A Error A Error
0 0.228E-14
1 -0.111E-15 11 -0.801E-14
2 0.425E-14 12 -0.165E-16
3 0.643E-14 13 -0.125E-13
4 0.296E-14 14 -0.547E-14
5 0.239E-14 15 —0.904E-15
6 0.114E-13 16 -0.173E-13
7 -0.278E-14 17 -0.401E-14
8 0.294E-14 18 -0.581E-14
9 0.306E-14 19 -0.174E-12
10 -0.542E-14 20 -0.787E-11
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is that the integration points are concentrated closer to the origin for t;
close to —1. Table Il shows the error at r =R = 1.0 for 0 £ A £ 20 computed
with Ny, = 20. These results are obtained using the computationally “exact”
expression for the exponential function in Eq. (35). Since the interest in
this investigation is in obtaining a numerical method, it is necessary to
make a numerical interpolation on the function values, necessarily re-
ducing the accuracy. Table IV shows the results corresponding to those of
Table Il if six-point interpolation is used to evaluate the function.

VII. CONVERGENCE ISSUES

The largest difficulty with the expansion using Eq. (4) may not be with the
evaluation of the a-function, but with the slow convergence of the result-
ing series. Since the Slater function, which is representative of any physi-
cally realistic function, is not differentiable at the origin, the series is neces-
sarily slowly convergent at r = R. In fact, it is not difficult to show from
Eq. (19) that F,(r,R) decreases as p*/A?, p = min(r,R)/max(r,R) for large A. For
r = R, the terms decrease as A=3. This problem is exhibited in Fig. 6, which
shows the difference between the approximation of Eq. (4) with I, = 20
for r in the R direction, and the exact value, e I RI,

TABLE IV
Results as in Table Ill using six-point interpolation for the exponential function

A Error A Error
0 0.687E-11
1 0.286E-10 11 0.190E-10
2 -0.364E-10 12 -0.845E-11
3 -0.523E-11 13 -0.126E-10
4 -0.411E-11 14 0.522E-11
5 -0.948E-11 15 0.106E-10
6 0.123E-10 16 -0.201E-11
7 0.146E-10 17 -0.103E-10
8 —0.108E-10 18 0.170E-10
9 -0.107E-10 19 0.467E-11

10 0.604E-11 20 —0.239E-10
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Figure 7 shows the related behaviour for r = R as a function of the variable
cos 0 = r-R/rR, again with I,,,, = 20. A further calculation shows that the rms
percent error on integrating over space is 0.00367. This slow convergence
calls into question the rationale for obtaining substantially greater accuracy
in the numerical calculation.

0.05 T T T T T

0.04 |- —

error

0.02 —

0.01 =

0.00 ! | L
0.4 0.6 0.8 1.0 1.2 1.4 1.6
log r

Fic. 6
The error (——) in e TR R =1 when approximated by the expansion of Eq. (4), with I, = 20

0.05 : | |

0.04 — =

error

0.03 — =

0.02 .

0.01 — .

0.00 rv\/W\M/-\/\/i‘

-0.01 ! I 1

log r

Fic. 7
The error (—) in eIr=RI, |r] = |R] = 1 as a function of cos 6 = r-R/rR when approximated by the
expansion of Eq. (4), with I .. =20
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On the other hand, the percent error, averaged over space, is 0.26 x 107,
showing the large extent to which the errors cancel. As well, in practice the
expansion is multiplied by an orbital at another center, so that the percent
error is largest where the integrand is relatively small.

To illustrate this, we consider the calculation of the three-centre nuclear
attraction integral:

I :Ig(r—al)|r—R|‘1f(r—a2)dr (38)

for f(r) = g(r) = e™". The integral can be computed by expanding each of the
three factors about an arbitrary centre and multiplying the resulting sums.
The product of two such angular momentum sums is reduced to a single
sum using the expansion Eq. (6). It can be shown that the convergence of
the resulting series is geometric in the larger of the ratios r,/r,, r,/r; where
r, <r, < rg are the distances to the three centers. Evidently, the center
should be chosen to minimise the larger of these two ratios, and this occurs
when the ratios are equal, giving rise to a geometrical problem. The conver-
gence is slowest in the case of an equilateral triangle, for which the ratio is
(5 -1)/2 = 0.618, the reciprocal of the golden mean.

TABLE V
The three-center nuclear attraction integral defined in Eq. (38) for the STO e™ with a; =
(1,0,0), a, = (0,1,0), R = (0,0,1) for various values of the angular momentum cut-off

| max Optimum center Diagonal pade

0 0.1100573170 0.1001516687
2 0.1180530776 0.1187849700
4 0.1176524947 0.1176508027
6 0.1176893047 0.1176999547
8 0.1176920843 0.1176903565
10 0.1176903750 0.1176903259
12 0.1176906429 0.1176906552
14 0.1176906709 0.1176906222
16 0.1176906460 0.1176906325
18 0.1176906509 0.1176906299
20 0.1176906515 0.1176906306
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Table V shows the result of this calculation for the case of the equilateral
triangle a; = (1,0,0), a, = (0,1,0), R = (0,0,1) for various values of |, the
cut-off in the angular momentum sums. An alternative approach is to ex-
pand each orbital about the nucleus. The result is a single sum on I, which
is however slowly convergent. A variety of nonlinear convergence accelera-
tion techniques are available to improve the convergence rate. The result of
computing the diagonal Pade approximant [l,../2,l,./2] is also shown in
Table V. In these results the main source of error is the radial integration.
The results indicate that both approaches can give reliable results for mod-
est values of |

max-

VIIl. FOUR-CENTER INTEGRALS

One of the most time-consuming processes in molecular calculations is the
computation of the four-center integrals

I :J.J.Xa(r_Ra)Xb(r _Rb)lr _r1_1XC(r, _Rc)Xd(r'_Rd) drdr' . (39)

The number of such integrals scales as N%/8 and an efficient method for
their calculation is essential. One approach to this problem?'? is to expand
the products x,(r - R,) Xp(r - R,) about some center, perhaps (R, + R,)/2:

Xa(r= Ra)Xb(r _Rb) = %\A,PLL'MM' (rvR)CLM (?)CL'M' (ém) : (40)

This product can be regarded as a charge density, and the integral as the in-
teraction energy of two densities. The electrostatic interaction energy of
two charge densities p{), (r —=R,), p?’(r -R,), is given in momentum space
by
L[ TR, (9B (k) - ok (41)
2.,.[2 limy lom, k2
where R = R; — R,. The four-center integrals can therefore be efficiently
computed by storing the Fourier transforms of the “densities” in Eq. (39)
and using Eq. (41) together with the expansion Eq. (7). Then

L, oo, L, 1O
X
0 O . M, —mH

E =

. nl
| =32mY (-1 "*htrzemoo py At
> (1) ( )Ho

X Cioy (R)Cipsy R, ) Cripe, R [, KRR,y P, Rk (42)

LiLiM M} LoLp

where the transforms P are given by Eq. (23).
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The values of the four-center integral for hydrogenic orbitals centered at
the tetrahedral vertices (a,a,a),(-a,—a,a),(-a,a,—a),(a,—-a,—a), a = 2/-/3 are
shown in Table VI for various values of L., the maximum of L; and L,
and I, the maximum of I, in Eq. (42). We also show the energy obtained
for the CH, molecule in this geometry, in a minimal calculation using these
orbitals and the Hartree-Fock atomic orbitals for C. The results show that
mH accuracy is obtainable with only a modest calculational effort.

TABLE VI
The four-center integral | for hydrogenic orbitals at the four vertices of a tetrahedron at a
distance 2.0 from its center. The energy for the CH, molecule is also shown

L nax lnax | CH, energy
10 4 0.490985 -39.89240
12 4 0.490955 -39.89210
14 4 0.490945 -39.89200
16 4 0.490940 -39.89197
18 4 0.490938 -39.89195
20 4 0.490938 -39.89195
20 6 0.490915 -39.89147
20 8 0.490917 -39.89148

IX. DISCUSSION

The results presented show that the a-function can be efficiently calculated
for numerically defined radial functions defined on arbitrary meshes. This
opens the way not only for the calculation of multicenter integrals involv-
ing such functions, but also to further procedures such as the variational
optimisation of such functions. Although the spherical Hankel transform
method has been used successfully in the past, the numerical integration
procedure defined in Eq. (35) is clearly more accurate and more efficient.

It is important to note, however, that the numerical Fourier Hankel trans-
form method is essential to the calculation of the electron repulsion four-
center integrals, as discussed briefly in Section VIII.
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